Interesting Macro（Excel）

1 Moving tangent on graphs of cubic functions

（1）Experiment overview
The simulation will be performed using the spreadsheet software＂Excel＂．
Draw a graph of the cubic function $y=x^{3}+x^{2}-2 x$ on the $x y$－coordinate plane．
Observe how the tangent line changes as the x－coordinate of the tangent changes．
Similar observations can be made more easily using graph drawing software such as＂Grapes＂．
However，there is something interesting about drawing in＂Excel＂，which everyone owns and uses frequently on a daily basis．Use＂Excel＂macro（VBA）．
（2）Experimental result（Excel version simulation）

【Experiment day】
January 14,2024
【PC used】
Lavie LS150／F
【Excel used】
Excel 2010
【Macro used（VBA）】
Self－made file
『movingtangent．xlsm
（Excel version）』
【Remarks】
The state of the tangent line was observed as the x －coordinate of the contact point changed from -2.8 to 2.1 in 0.01 increments．

（1）When the x －coordinate of the contact point is -2.0

Interesting Macro (Excel)

1 Moving tangent on graphs of cubic functions

(2) Experimental result (Excel version simulation)
(2) When the x-coordinate of the contact point is -1.21

(3) When the x-coordinate of the contact point is -0.45

Interesting Macro (Excel)

1 Moving tangent on graphs of cubic functions

(2) Experimental result (Excel version simulation)
(4) When the x-coordinate of the contact point is 0.0

(5) When the x-coordinate of the contact point is 0.32

Interesting Macro (Excel)

1 Moving tangent on graphs of cubic functions

(2) Experimental result (Excel version simulation)
(6) When the x -coordinate of the contact point is 0.55

(7) When the x-coordinate of the contact point is 1.38

Interesting Macro（Excel）

2 Translation of graph of quadratic function

（1）Experiment overview
The simulation will be performed using the spreadsheet software＂Excel＂．
Draw the graphs of the quadratic functions $y=-(x-1)^{2}+8$ and $y=-x^{2}$ on the $x y$－coordinate plane．
Observe that the former is the latter translated by +1 in the x－axis direction and +8 in the y －axis direction．Although it is easier to observe graphs using graph drawing software such as ＂Grapes＂，it is interesting to draw them using＂Excel＂，which everyone owns and uses frequently in a daily basis．Use＂Excel＂macro（VBA）．
（2）Experimental result（Excel version simulation）

【Experiment day】
January 15， 2024
【PC used】
Lavie LS150／F
【Excel used】
Excel 2010
【Macro used（VBA）】
Self－made file
『translationquadratic．xlsm（Excel version）』

【Remarks】

First，translate the graph of $y=-x^{2}$ by +1 in the x－axis direction，then translate by +8 in the y－axis direction． We observed the parallel movement in 0.05 increments． The graph of $\mathrm{y}=-\mathrm{x}^{2}$ overlaps the graph of $\mathrm{y}=-(\mathrm{x}-1)^{2}+8$ ．

（1）When the vertex coordinates are $(0,0)$

Interesting Macro (Excel)

2 Translation of graph of quadratic function

(2) Experimental result (Excel version simulation)
(2) When the vertex coordinates are $(0.6,0)$

(3) When the vertex coordinates are $(1,0)$

Interesting Macro (Excel)

2 Translation of graph of quadratic function

(2) Experimental result (Excel version simulation)
(4) When the vertex coordinates are $(1,1.3)$

(5) When the vertex coordinates are $(1,3.6)$

Interesting Macro (Excel)

2 Translation of graph of quadratic function

(2) Experimental result (Excel version simulation)
(6) When the vertex coordinates are $(1,5.9)$

(7) When the vertex coordinates are $(1,8)$

Interesting Macro（Excel）

3 Archimedes spiral line

（1）Experiment overview
The simulation will be performed using the spreadsheet software＂Excel＂．
The polar equation of Archimedes spiral line is $\mathrm{r}=\mathrm{a} \theta$（a：coefficient）．
With $\mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$ ，draw a trajectory，using parametric variables converted to orthogonal coordinates．You can observe more easily this using graph drawing software such as ＂Grapes＂．However ，there is someting interesting about drawing in＂Excel＂，which everyone owns and uses frequently on a daily basis．Use＂Excel＂macro（VBA）．
（2）Experimental result（Excel version simulation）

【Experiment day】
January 16， 2024
［PC used】
Lavie LS150／F

【Remarks】

I changed the value of a in the polar equation $r=a \theta$ of Archimedes spiral line from 0 to 10.05 in 0.05 increments and obseved them．
（1）When the value of a is 0

t（度）	Fab	$x=r \cos \theta$	$y=r \sin \theta$												
0	0	0	0	$a=0$											
1	0	0	0												
2	0	0	0	［Ar	rchimedes spiral line］										
3	0	0	0												
4	0	0	0							150					
5	0	0	0	Button to	change the value of a										
6	0	0	0							120					
7	0	0	0												
8	0	0	0							90					
9	0	0	0												
10	0	0	0							60					
11	0	0	0							60					
12	0	0	0												
13	0	0	0							30					
14	0	0	0												
15	0	0	0							0					
16	0	0	0			－150	-120	-90	-60	－30	30	60	90	120	150
17	0	0	0							-30					
18	0	0	0												
19	0	0	0												
20	0	0	0												
21	0	0	0												
22	0	0	0							－90					
23	0	0	0												
24	0	0	0							-120					
25	0	0	0												
26	0	0	0							50					
27	0	0	0												

Interesting Macro (Excel)

3 Archimedes spiral line

(2) Experimental result (Excel version simulation)

(2) When the value of a is 1

(3) When the value of a is 2.8

Interesting Macro (Excel)

3 Archimedes spiral line

(2) Experimental result (Excel version simulation)

(4) When the value of a is 4.6

(5) When the value of a is 6.4

Interesting Macro (Excel)

3 Archimedes spiral line

(2) Experimental result (Excel version simulation)
(6) When the value of a is 8.2

(7) When the value of a is 10

Interesting Macro（Excel）

4 Positive leaf curve

（1）Experiment overview
The simulation will be performed using the spreadsheet software＂Excel＂．
The polar equation of a positive leaf curve is $r=\operatorname{sina} \theta$（a：coefficient）
Draw a trajectory using parametric variables converted to orthogonal coordinates with $\mathrm{x}=\mathrm{rcos} \theta, \mathrm{y}=\mathrm{r} \sin \theta$ ．It can be observed more easily using graph drawing software such as ＂Grapes＂．However，there is something interesting about drawing in＂Excel＂，which everyone owns and uses frequently on a daily basis．Use＂Excel＂macro（VBA）．
（2）Experimental result（Excel version simulation）
【Experiment day】
January 18， 2024
【PC used】
Lavie LS150／F
【Excel used】 Excel 2010
【Macro used（VBA）】
Self－made file
『positiveleaf．xlsm（Excel version）』

【Remarks】

The value of a in the polar equation $r=\sin a$ of a positive leaf curve was changed from 0 to 10.5 in 0.05 increments，
 and the positive leaf curve was observed．

When the value of a is an even number，the number of leaves is $2 a$ ，and when the value of a is odd，the number of leaves is a．Also，when the first decimal place of the value of a is 5 ，the number of leaves is 2 a ． When the value of a is an even number，the positive leaf curve is symmetrical about the x－axis and the y－axis and the leaves do not overlap．When the value of a is an odd number，the positive leaf curve is symmetrical about the y－axis，and the leaves overlap neatly in pairs．In the positive leaf curve，when the first decimal place of the value of a is 5 ，the leaves are biased and the leaves patially overlap．A positive leaf curve when the first decimal of the value of a is other than 5 has a leaf that is being drawn．
（1）When the value of a is 0

	$1=\sin$ a θ	$x=r \cos \theta$
0	0	
1	0	
2	0	
3	0	
4	0	
5	0	
6	0	
7	0	
8	0	
9	0	
10	0	
11	0	
12	0	
13	0	
14	0	
15	0	
16	0	
17	0	
18	0	
19	0	
20	0	
21	0	
22	0	
23	0	
24	0	
25	0	
26	0	

Interesting Macro (Excel)

4 Positive leaf curve

(2) Experimental result (Excel version simulation)
(2) When the value of a is 0.5

(3) When the value of a is 1

Interesting Macro (Excel)

4 Positive leaf curve

(2) Experimental result (Excel version simulation)
(4) When the value of a is 1.5

(5) When the value of a is 2

Interesting Macro (Excel)

4 Positive leaf curve

(2) Experimental result (Excel version simulation)
(6) When the value of a is 2.5

(7) When the value of a is 3

Interesting Macro (Excel)

4 Positive leaf curve

(2) Experimental result (Excel version simulation)
(8) When the value of a is 3.5

(9) When the value of a is 9
t(度)

Interesting Macro (Excel)

4 Positive leaf curve

(2) Experimental result (Excel version simulation)
(10) When the value of a is 9.5

(11) When the value of a is 10

Interesting Macro（Excel）

5 Perfect number

（1）Experiment overview
Search for perfect numbers using the spreadsheet software＂Excel＂．
A perfect number is an integer greater than or equal to 2 ，and the sum of its divisors， excluding itself，is equal to itself．For example，the divisors of 6 are $1,2,3$ ，and 6 ，and the sum of the divisors，excluding itself，is $1+2+3=6$ ，so 6 is a perfect number．

Research for perfect numbers using＂Excel＂macro（VBA）．
（2）Experimental result（Excel version simulation）
【Experiment day】
January 19， 2024
【PC used】
Lavie NX850／N
【Excel used】
Excel 2019
【Macro used（VBA）】
Self－made file
『perfectnumber．xlsm（Excel version）』

【Remarks】

To find a perfect number，examine each integer greater than or equal to 2 to see if it satisfies the definition of a perfect number． 2 is not satisfied． 3 is not satisfied． 4 is not satisfied because it is $1+2 . \cdots$ ．However，the brute force method takes a considerable amount of time．

It is known that when n is a natural number and $2^{n}-1$ is a prime number， $2^{n-1}\left(2^{n}-1\right)$ is a perfect number．
So，can all perfect numbers be expressed in the form $2^{n-1}\left(2^{n}-1\right)$ ？It has been proven that all even perfect numbers are collect．However，the odd perfect number has not yet been found．
（1）When $\mathrm{n}=2,\left(2^{\mathrm{n}}-1\right)$ is a prime number． $2^{\mathrm{n}-1}\left(2^{\mathrm{n}}-1\right)=6$ is a perfect number．
（1）When $n=3,\left(2^{n}-1\right)$ is a prime number． $2^{\mathrm{n}-1}\left(2^{\mathrm{n}}-1\right)=28$ is a perfect number．
（3）When $n=5,\left(2^{n}-1\right)$ is a prime number． $2^{n-1}\left(2^{n}-1\right)$ $=496$ is a perfect number．
（4）When $n=7,\left(2^{n}-1\right)$ is a prime number． $2^{\mathrm{n}-1}\left(2^{\mathrm{n}}-1\right)$
$=8,128$ is a perfect number．
（5）When $\mathrm{n}=13,\left(2^{\mathrm{n}}-1\right)$ is a prime number． $2^{n-1}\left(2^{n}-1\right)$ $=33,550,336$ is a perfect number．
（6）When $\mathrm{n}=17,\left(2^{\mathrm{n}}-1\right)$ is a prime number． $2^{\mathrm{n}-1}\left(2^{\mathrm{n}}-1\right)$
$=8,589,869,056$ is a perfect number．
（7）When $n=19,\left(2^{n}-1\right)$ is a prime number． $2^{\mathrm{n}-1}\left(2^{\mathrm{n}}-1\right)$
$=137,438,691,328$ is a perfect number．
（8）When $n=31,\left(2^{n}-1\right)$ is a prime number． $2^{\mathrm{n}-1}\left(2^{\mathrm{n}}-1\right)$
$=2,305,843,008,139,950,000$ is a perfect \cdots ．

n	$2^{n}-1$	Prime？	$2^{n-1}\left(2^{n}-1\right)$	Perfect？
2	3	Prime	6	Perfect
3	7	Prime	28	Perfect
4	15		120	
5	31	Prime	496	Perfect
6	63		2016	
7	127	Prime	8128	Perfect
8	255		32640	
9	511		130816	
10	1023		523776	
11	2047		2096128	
12	4095		8386560	
13	8191	Prime	33550336	Perfect
14	16383		134209536	
15	32767		536854528	
16	65535		2147450880	
17	131071	Prime	8589869056	Perfect
18	262143		34359607296	
19	524287	Prime	137438691328	Perfect
20	1048575		549755289600	
21	2097151		2199022206976	
22	4194303		8796090925056	
23	8388607		35184367894528	
24	16777215		140737479966720	
25	33554431		562949936644096	
26	67108863		2251799780130820	
27	134217727		9007199187632130	
28	268435455		36028796884746200	
29	536870911		144115187807420000	
30	1073741823		576460751766553000	
31	2147483647	Prime	2305843008139950000	Perfect

