Modeling and Simulation III

1 Playing Cards that Are Multiples of 3

（1）Experiment overview
Here is a deck of cards．
The deck uses 52 playing cards ， excluding the two jokers．
There are four of each of the multiples of 3 ；spades ，clovers ，diamonds， and hearts making a total of 16 cards．
When you draw a card from this deck of 52 cards，consider the probability that that card is a multiple of 3 ．
Since 16 of the 52 cards are multiples of 3 ，mathematically the probability is $16 / 52$ ．
However，in reality，if you draw and put back one at a time， 52 times，it is not guaranteed that you will exactlly draw 16 cards that are multiples of 3 ．
So how does this relate to mathematically calculated theoretical pribability of 16／52？
（2）Experimental result（VB version simulation）
【Experiment day】
March 6.2024
【PC used】
Lavie NX850／N
【Software used】
Self－made software
『toramp 6』
【Method of operation】
To do this manually，click the［Shuffle］button，then click the［Draw］button．
To do this automatically ，click the［AutoStart］button，then click the［AutoStop］button． Clicking the［Graph display］button will display a graph showing the relationship between the total number of cards drawn and the percentage of cards that were multiples of 3 ．
Click the［Init］button to restart the experiment from the beginning．
【Consideration】
In the 1st experiment ，I draw and put back one card at a time 1000 times．
I drew cards that were multiples of three 289 times．
The ratio of drawing a card that is a multiple of 3 is $289 \div 1000=0.289$ ．
The mathematically calculated theoretical probability is $16 \div 52=0.3076923$ ．
The ratio of drawing a card that is a multiple of $3,0.289$ is close to the mathematically calculated theoretical probability of 0.3076923 ．
In the 2 nd experiment，I draw and put back one card at a time 1000 times，too．
I drew cards that were multiples of three 304 times．
The ratio of drawing a card that is a multiple of 3 is $304 \div 1000=0.304$ ．
The ratio of drawing a card that is a multiple of $3,0.304$ is close to the mathematically calculated theoretical probability of 0.3076923 ．
The graphs for experiments（1）and（2）have the number of cards drawn on the horizontal axis and the percentage of cards drawn that were multiples of 3 at that time on the vertical axis．
The more cards you draw，the closer your chances of drawing a card that is a multiple of 3 become to the mathematically calculated theoretical probability of 16／52（0．3076923）．

Modeling and Simulation III

1 Playing Cards that Are Multiples of 3

(2) Experimental result (VB version simulation)
(1) 1st experiment

Playing Cards in Multiples of 3 Copyright (C) Sohun 6.2022

	Exit	Playing Cards in Multiples of 3	Help	Init

| Total number of cards in multiples of 3 | 16 |
| :---: | :---: | :---: |
| Total number of playing cards | 52 |

Number of cards in multiples of 3 drawn	289	
Total number of cards drawn	1000	0.2890000

Shuffle
Draw

Graph Copyright (C) Sohun 6.2022

Modeling and Simulation III

1 Playing Cards that Are Multiples of 3

(2) Experimental result (VB version simulation)
(2) 2nd experiment
Playing Cards in Multiples of 3 Copyright (C) Sohun 6.2022

Exit	Playing Cards in Multiples of 3	Help	Init

Total number of cards in multiples of 3	16	\fallingdotseq	0.3076923
Total number of playing cards	52		

Number of cards in multiples of 3 drawn

Shuffle

Draw

Modeling and Simulation III

2 Two Coins Toss

（1）Experiment overview
Let＇s toss two coins at the same time and think about how they will come up heads and tails．
Let these two coins be coin1 and coin2， respectively．There are four ways to come out ： heads and heads，heads and tails，tails and heads，and tails and tails．Mathematically，the probability of each of these four coins occurring is $1 / 4$ ．However，in reality，when two coins are tossed four times at the same times，heads and heads ， heads and tails，tails and heads，and tails and tails don＇t necessarily occur once each．So what is the relationship with the theoretical probability of $1 / 4$ calculated mathematically ？
（2）Experimental result（VB version simulation）

【Experiment day】
March 8． 2024
【PC used】
Lavie NX850／N
【Software used】
Self－made software
『two coins toss 6』
【Method of operation】
［Start］Click the button to start the experiment．
［Stop］Click the button to stop the experiment．
［Graph display］Clicking the button will display a graph showing the relationship between the number of experiments and the proportion of heads and heads，heads and tails，tails and heads，and tails and tails．
［Init］Click the button to restart the experiment from the beginning．
【Consideration】
In experiment（1），coins1 and 2 were tossed simultaneously 3965 times．
Both coin1 and coin2 came up heads 997 times，coin1 came up heads and coin2 came up tails 996 times，coin1 came up tails and coin2 came up heads 972 times ，both coin1 and coin2 came up tails 1000 times．Also the percentage of coin1 and coin2 coming up heads is 0.251 ，the percentage of coin1 coming up heads and coin2 coming up tails is 0.251 ， the percentage of coin 1 coming up tails and coin 2 coming up heads is 0.245 ，and the percentage of coin1 and coin2 coming up tails is 0.252 ．
In experiment（2），coins 1 and 2 were tossed simultaneously 3892 times．
Both coin1 and coin2 came up heads 946 times，coin1 came up heads and coin2 came up tails 1000 times，coin1 came up tails and coin2 came up heads 953 times，both coin1 and coin2 came up tails 993 times．Also the percentage of coin1 and coin2 coming up heads is 0.243 ，the percentage of coin1 coming up heads and coin2 coming up tails is 0.257 ， the percentage of coin 1 coming up tails and coin 2 coming up heads is 0.245 ，and the percentage of coin 1 and coin 2 coming up tails is 0.255 ．
From the graph，we can see that when the coin 1 and coin 2 are tossed at the same time，the ratio of heads to heads，heads to tails，tails to heads，and tails to tails approaches $1 / 4(0.25)$ as the number of tosses increases．

Modeling and Simulation III

2 Two Coins Toss

(2) Experimental result (VB version simulation)

Experiment (1)

Two Coins Toss Copyright (C) Sohun 4.2022

Exit

Graph Copyright (C) Sohun 4.2022

Modeling and Simulation III

2 Two Coins Toss

(2) Experimental result (VB version simulation)

Experiment (2)

Number of experiment
3892 Stop
Graph display

Graph Copyright (C) Sohun 4.2022

$\overline{\mathrm{Fr} \cdot \mathrm{Fr}}-\quad \mathrm{Fr} \cdot \mathrm{Ba}-\quad \mathrm{Ba} \cdot \mathrm{Fr}-\quad \mathrm{Ba} \cdot \mathrm{Ba}-$

Modeling and Simulation III

3 Three People Playing Rock－Paper－Scissors

（1）Experiment overview
Three people，A，B，C play
Rock－Paper－Scissors once．Draw has 9 ways ： for A ，B ，and C：Rock／Rock／Rock ， Paper／Paper／Paper，Scissors／Scissors／Scissors ， Rock／Scissors／Paper，Rock／Paper／Scissors， Paper／Scissors／Rock ，Paper／Rock／Scissors ， Scissors／Rock／Paper，Scissors／Paper／Rock． If A wins alone，there are three ways for A ， B ，and C ：Rock／Scissors／Scissor ， Scissor／Paper／Paper，Paper／Rock／Rock． Similarly for B ，C，there are three ways in which only one person can win．If A loses alone，there are 3 ways for A，B ，and C： Rock／Paper／Paper，Scissors／Rock／Rock ， Paper／Scissors／Scissors．Similarly for B ，C ， there are three ways in which only one person can lose．
In other words，when three people play Rock－Paper－Scissors once，there are a total of 27 ways to play Rock－Paper－Scissors．For example，here are 9 ways to become a draw so the mathematical probability is $9 / 27$ ，which can be reduced to $1 / 3$（0．333）．However，in reality ，if you play Rock－Paper－Scissors three times，there will not be only one draw．So ，what is the relationship with the mathematically calculated theoretical probability of a draw of $1 / 3$ ？
（2）Experimental result（VB version simulation）
【Experiment day】
March 10 ． 2024
【PC used】
Lavie NX850／N
【Software used】
Self－made software
『jyanken 6』
【Method of operation】
If you want to do it manually，click the［Start］button，then click the［Decision］button． If you want to do it automatically，click the［AutoStart］button，then click the ［AutoStop］button．
Click the［GraphDisplay］button to display graphs of the percentage for cases where there is a draw，only one person wins，and only one person loses．
Click the［Init］button to restart the experiment from the beginning．
【Consideration】
In the experiment，three people A ，B ，and C played Rock－Paper－Scissors 2733 times．There were 906 draws，and the percentage was 0.332 ．Only one person wan 919 times，and the percentage was 0.336 ．Only one person lost 908 times and the percentage was 0.332 ．The mathematical probability of a draw is $9 / 27$（ 0.333 ）．The mathematical probability that only one person wins is $9 / 27$（0．333）． The mathematical probability that only one person loses is $9 / 27$（0．333）．From the graph of the experimental results，we can see that when three people play Rock－Paper－Scissors a lot ，the percentage of draws，the percentage of only one player winning，and only one player losing respectively approach 0.33 ．

Modeling and Simulation III

3 Three People Playing Rock-Paper-Scissors

(2) Experimental result (VB version simulation)

Rock-paper-scissors Copyright (C) Sohun 5.2022

Modeling and Simulation III

4 Two Dice with an Odd Product

（1）Experiment overview
Think about what will happen if you throw two large and small dice at the same time．
Let＇s call two dice large and small ， respectively．There are thirty six ways to get the numbers ： $1 \cdot 1,1 \cdot 2,1 \cdot 3,1 \cdot 4,1 \cdot 5$ ， $1 \cdot 6,2 \cdot 1,2 \cdot 2,2 \cdot 3,2 \cdot 4,2 \cdot 5,2 \cdot 6$ ， $3 \cdot 1,3 \cdot 2,3 \cdot 3,3 \cdot 4,3 \cdot 5,3 \cdot 6,4 \cdot 1$ ， $4 \cdot 2,4 \cdot 3,4 \cdot 4,4 \cdot 5,4 \cdot 6,5 \cdot 1,5 \cdot 2$ ， $5 \cdot 3,5 \cdot 4,5 \cdot 5,5 \cdot 6,6 \cdot 1,6 \cdot 2,6 \cdot 3$ ， $6 \cdot 4,6 \cdot 5$ ，and $6 \cdot 6$ ．
Also ，there are nine ways that the product of two large and small dice can be an odd number ： $1 \cdot 1,1 \cdot 3,1 \cdot 5,3 \cdot 1,3 \cdot 3,3 \cdot 5$ ， $5 \cdot 1,5 \cdot 3$ ，and $5 \cdot 5$ ．
Therefore ，mathematically，the probabolity that the product of two large and small dice will be an odd number is $9 / 36$ ，which is reduced to $1 / 4$（ 0.25 ）．

However，in reality，if you toss two coins at the same time four times，it isn＇t necessarily mean that the product of the two dice will be an odd number only once．So ，what is the relationship with the mathematically calculated theoretical probability of $1 / 4$ ？
（2）Experimental result（VB version simulation）
【Experiment day】
March 12 ． 2024
【PC used】
Lavie NX850／N
【Software used】
Self－made software
『two dice 6』
【Method of operation】
If you want to experiment manually，click the［Throw the dice］button，then click the
［Stop the dice］button．
If you want to experiment automatically，click the［Automatic］button，then click the［Stop］ button．
Click the［Graph display］button to display a graph showing the relationship between the number of experiments and the ratio of the product of the two dice to an odd number．
Click the［Init］button to restart the experiment from the beginning．
【Consideration】
In the experiment，two large and small dice were thrown simultaneously 1000 times．When the product is an odd number，in order of large dice and small dice， $1 \cdot 1$ are 32 times， $1 \cdot 3$ are 32 times， $1 \cdot 5$ are 20 times， $3 \cdot 1$ are 22 times， $3 \cdot 3$ are 28 times， $3 \cdot 5$ are 35 times， $5 \cdot 1$ are 19 times， $5 \cdot 3$ are 20 times， $5 \cdot 5$ are 48 times for a total of 256 times．The ratio of the product of he two dice being an odd number was 0.256 ．
The mathematical probability that the product of two dice will be an odd number is $9 / 36$（0．25）． From the graph of the experimental results，we can see that if you throw two large and small dice at the same time many times，the ratio of the product of the two large and small dice to an odd number approaches 0.25 ．

Modeling and Simulation III

4 Two Dice with an Odd Product

(2) Experimental result (VB version simulation)

Graph Copyright (C) Sohun 6.2022

Modeling and Simulation III

5 Collatz Problem

（1）Experiment overview
Any natural number will do，so if the number is even，divide it by 2 ，if it is odd， multiply it by 3 and add 1 ，and repeat． So is it true that no matter what number we start with，it always ends up being 1 ？
For example，if you start with $11,11 \rightarrow$ $34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow$ $10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$ ．
This problem is a famous conundrum that has not yet been solved．
Also ，very large numbers（4 trillion have been investigated using computers）．
However，no example has been found where it does not become 1 ．
I tried a sample experiment using a
computer．
（2）Experimental result（VB version simulation）

【Experiment day】

March 13． 2024
【PC used】
Lavie NX850／N
【Software used】
Self－made software
『 $3 x+1$ problem 6』
【Method of operation】
Click the［Experiment］button．
Enter a natural number between 3 and 10，000，000 in half－width characters．
Click the［OK］button．
Starting with the natural number you input，the display shows how the number is divided by
2 if it is even，or multiplied by 3 and then add by 1 if it is odd，and repeated．
Click the［Init］button to restart the experiment from the beginning．

【Consideration】

The 1st experiment started at $17.17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$ ．
The 2nd experiment started at $111.111 \rightarrow 334 \rightarrow 167 \rightarrow 502 \rightarrow 251 \rightarrow 754 \rightarrow 377 \rightarrow 1132 \rightarrow 566 \rightarrow$ $283 \rightarrow 850 \rightarrow 425 \rightarrow 1276 \rightarrow 638 \rightarrow 319 \rightarrow 958 \rightarrow 479 \rightarrow 1438 \rightarrow 719 \rightarrow 2158 \rightarrow 1079 \rightarrow 3238 \rightarrow 1619 \rightarrow$ $4858 \rightarrow 2429 \rightarrow 7288 \rightarrow 3644 \rightarrow 1822 \rightarrow 911 \rightarrow 2734 \rightarrow 1367 \rightarrow 4102 \rightarrow 2051 \rightarrow 6154 \rightarrow 3077 \rightarrow 9232$ $\rightarrow 4616 \rightarrow 2308 \rightarrow 1154 \rightarrow 577 \rightarrow 1732 \rightarrow 866 \rightarrow 433 \rightarrow 1300 \rightarrow 650 \rightarrow 325 \rightarrow 976 \rightarrow 488 \rightarrow 244 \rightarrow 122 \rightarrow$ $61 \rightarrow 184 \rightarrow 92 \rightarrow 46 \rightarrow 23 \rightarrow 70 \rightarrow 35 \rightarrow 106 \rightarrow 53 \rightarrow 160 \rightarrow 80 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$ ．
The 3rd experiment started at 11111．11111 $\rightarrow \cdots \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4$ $\rightarrow 2 \rightarrow 1$ ．
The 4th experiment started at 1717171．1717171 $\rightarrow \cdots \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow$ $8 \rightarrow 4 \rightarrow 2 \rightarrow 1$ ．
The 5th experiment started at 9999999．9999999 $\rightarrow 0 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow$ $8 \rightarrow 4 \rightarrow 2 \rightarrow 1$ ．

Modeling and Simulation III

5 Collatz Problem

(2) Experimental result (VB version simulation)
(1) 1st experiment

(2) 2nd experiment

Modeling and Simulation III

5 Collatz Problem

(2) Experimental result (VB version simulation)
(3) 3 rd experiment

```
33834 16667 50002 25001 75004 87502 18751 56254 28127 8438242191 128574 63287 189862 94981 284794 142897 427192
213596 10679853399 16019880099 240299120149 350448 100224 9011245056 22528 112645632 2816 1408 704 352 176 88 44
221134 1752 26 13 40 20 10 5 16 & 4 21
    n=11111
    Experiment
```

(4) 4th experiment

Modeling and Simulation III

5 Collatz Problem

(2) Experimental result (VB version simulation)
(5) 5th experiment
299999981499999944999998224999996749999838749999101249998 . 0062499915187499875937499227812498113906249
34171874817085937485429687256283062128144531.38443359419221679757565039228882519614416259872081299
216243898108121949324865848162182924810914624054573112163719460818597182455792912278964561394822806974
11403487342104621710523151315694256578477697354238486771115460314577301571731904728659523643297518
21648809649464283247321416236607487098222435491173064734365323671095971025479855116439565482197827
24659348212329674136989022418494511292472556462362762311818969354418346772091040316285201581426007907
78023722390118611170355845851779229258896146294487314724365736219286815485044274302213715114114534
20572676171802308590192577044628852231442611672133471640173582086791043395513018666509321952800976400
488200244188122050610251830769153845769137308686543432710298251491154474772372317121158565792828964
$144827241217241086254311629481472444212221366641833291684583137506875 \quad 2062810313 \quad 30940154707735 \quad 23206$
1150334810174055221626108130546527195823791293741468744062220316609433047991424957114871474357
$223072 \quad 1115355576827884139426971209141045731372 \quad 16686784323530117653529617648.882444122296 \quad 1103: 33101665$
4956248274503725111765588279413974192209610485242621313941975922961487437112562814722113417
522613402105168421
$n=9999999$

Experiment

Modeling and Simulation III

6 Pythagorean Numbers

（1）Experiment overview
Three positive integers（ a, b, c ）
that satisfy the Pythagorean theoream are called Pythagorean triples．
To satisfy the Pythagorean theorem is to satisfy $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$ ．
When a is odd，the Pythagorean triples can be found by using

$$
\begin{aligned}
& \mathrm{b}=\left(\mathrm{a}^{2}-1\right) \div 2 \\
& \mathrm{c}=\left(\mathrm{a}^{2}+1\right) \div 2
\end{aligned}
$$

This method is called the

Pythagorean method．
When a is even，the Pythagorean triples can be found by using
$b=(a \div 2)^{2}-1$
$c=(a \div 2)^{2}+1$ ．
This method is called Plato＇s method．
（2）Experimental result（VB version simulation）
【Experiment day】
March 17． 2024
【PC used】
Lavie NX850／N
【Software used】
Self－made software
『Pythagorean number 6』
【Method of operation】
When you click the［Next］button，the value of integer a will increase by 1 ，and the values
of integer b and integer c at that time will be displayed．（In this case， a, b ，and c satisfy the Pythagorean theorem $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$ ）．
Click the［Init］button to restart the experiment from $\mathrm{a}=3$ ．

【Consideration】

The 1 st experiment is when $\mathrm{a}=102$ ．Since $\mathrm{a}=102$ is an even number，We will use plato＇s method．
$\mathrm{b}=(\mathrm{a} \div 2)^{2}-1=(102 \div 2)^{2}-1=2600$
$\mathrm{c}=(\mathrm{a} \div 2)^{2}+1=(102 \div 2)^{2}+1=2602$
$\mathrm{a}^{2}=10404$
$\mathrm{b}^{2}=6760000$
$c^{2}=6770404$
$\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$ is satisfied．
The 2 nd experiment is when $a=103$ ．Since $a=103$ is an odd number．We will use Pythagorean method．
$\mathrm{b}=\left(\mathrm{a}^{2}-1\right) \div 2=\left(103^{2}-1\right) \div 2=5304$
$\mathrm{c}=\left(\mathrm{a}^{2}+1\right) \div 2=\left(103^{2}+1\right) \div 2=5305$
$\mathrm{a}^{2}=10609$
$b^{2}=28132416$
$\mathrm{c}^{2}=28143025$
$a^{2}+b^{2}=c^{2}$ is satisfied．
The 3rd experiment uses Plato＇s method，and the 4th experiment uses Pythagorean method．
In both cases，the Pythagorean theorem $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$ is satisfied．

Modeling and Simulation III

6 Pythagorean Numbers

(2) Experimental result (VB version simulation)
(1) 1st experiment

(2) 2nd experiment

Pythagorean triple Copyright (C) Sohun 6.2022

Exit	Pythagorean Triple
	<Pythagorean method>
	$(\sqrt{103}, \sqrt{5304}, \sqrt{5305})$

A set of positive integers (a, b, c) that satisfies the Pythagorean thorem is called a Pythagorean triple.

When a is odd number, the Pythagorean triple is obtained by $b=\left(a^{\wedge} 2-1\right) \div 2$ and $c=\left(a^{\wedge} 2+1\right) \div 2$. This method is called the (Pythagorean method)

When a is even number, the Pythagorean triple is obtained by $\left.b=(a \div 2)^{\wedge} 2-1\right)$ and $\left.c=(a \div 2){ }_{2}+1\right)$. This method is called the (Plato's method).

Next

Modeling and Simulation III

6 Pythagorean Numbers

(2) Experimental result (VB version simulation)
(3) 3rd experiment

Pythagorean triple Copyright (C) Sohun 6.2022

| Exit | Pythagorean Triple | nit |
| :---: | :---: | :---: | :---: |

<Plato's method>
$(\sqrt{776}, \sqrt{150543}, \sqrt{150545})$

A set of positive integers (a, b, c) that satisfies the Py thagorean thorem is called a Pythagorean triple.

When a is odd number, the Pythagorean triple is obtained by $b=\left(a^{\wedge} 2-1\right) \div 2$ and $c=\left(a^{\wedge} 2+1\right) \div 2$. This method is called the (Pythagorean method).

When a is even number, the Pythagorean triple is obtained by $\left.b=(a \div 2)^{2} 2-1\right)$ and $c=(a \div 2)(2+1)$. This method is called the (Plato's method).

Next

(4) 4th experiment
Pythagorean triple Copyright (C) Sohun 6.2022

| Exit | Pythagorean Triple |
| :---: | :---: | :---: |
| | <Pythagorean method> |
| | $(\boxed{777}, \sqrt{301864}, \sqrt{301865})$ |

A set of positive integers (a, b, c) that satisfies the Pythagorean thorem is called a Pythagorean triple.
When a is odd number, the Pythagorean triple is obtained by $b=\left(a^{\wedge} 2-1\right) \div 2$ and $c=\left(a^{\wedge} 2+1\right) \div 2$. This method is called the (Pythagorean method).

When a is even number, the Pythagorean triple is obtained by $b=(a \div 2) 2-1)$ and $\left.c=(a \div 2)^{\prime} 2+1\right)$. This method is called the (Plato's method).

