Interesting Simulation

1 Find an approximate value of pi by scattering the needles

（1）Experiment overview
Draw parallel lines at equal intervals and scatter the needles randomly over the lines．
All needles are the same length，and the distance between parallel lines is twice the length of the needles．The scattered needles either intersect parallel lines or are between parallel lines and do not intersect．
At this time，the approximate value of pi can be found using the following formula．
$\mathrm{pi}=$（Total number of scattered needles）\div（Number of needles intersecting parallel lines）
（2）Experimental result（Java version simulation）
（1）When the needles have not yet been scattered

【Experiment day】
January 9 ． 2024
【PC used】
Lavie NX850／N
【Software used】
Self－made software『Scatter needles to find an approximate value of pi！（Java）』

Interesting Simulation

1 Find an approximate value of pi by scattering the needles

(2) Experimental result (Java version simulation)
(3) When 100 needles are scattered

Total number of scattered needles $=100$
Number of needles
intersecting parallel lines $=31$
Approximate value of $\mathrm{pi}=100 \div 31$

$$
=3.225806 \cdots
$$

(4) When 1000 needles are scattered

Total number of scattered needles $=1000$
Number of needles
intersecting parallel lines $=328$
Approximate value of $\mathrm{pi}=1000 \div 328$

$$
=3.048780 \cdots
$$

Interesting Simulation

1 Find an approximate value of pi by scattering the needles

(2) Experimental result (Java version simulation)
(5) When 10000 needles are scattered

Total number of scattered needles $=10000$
Number of needles
intersecting parallel lines $=3280$
Approximate value of $\mathrm{pi}=10000 \div 3280$

$$
=3.048780 \cdots
$$

(6) When 50000 needles are scattered

Total number of scattered needles $=50000$
Number of needles
intersecting parallel lines $=15898$
Approximate value of $\mathrm{pi}=50000 \div 15898$

$$
=3 . \quad 145049 \cdots
$$

Interesting Simulation

2 Find an approximate value of pi by scattering 10－yen coins

（1）Experiment overview
Draw equally spaced parallel lines vertically and horizontally（grid lines），and randomly scatter 10 －yen coins on them．
The width of the parallel lines that make up the grid lines is the same as the diameter of a ten－yen coin．The scattered ten－yen coins either overlap with the grid points or are on the grid lines but do not overlap with the grid points．
At this time，the approximate value of pi can be found using the following formula．
$\mathrm{pi}=$（Number of 10 －yen coins that overlap with grid points）\div

$$
\text { (Total number of scattered } 10 \text {-yen coins) } \times 4
$$

（2）Experimental result（Java version simulation）
（1）When 10－yen coins have not yet been scattered

【Experiment day】
January 9.2024
【PC used】
Lavie NX850／N
【Software used】
Self－made software『Throw coins to find an approximate value of pi！（Java）』

（2）When 1010 －yen coins are scattered

Total number of scattered 10 －yen coins $=10$
Number of 10 －yen coins that overlap with

$$
\text { grid points }=7
$$

Approximate value of pi $=7 \div 10 \times 4$

$$
=2.8
$$

Interesting Simulation

2 Find an approximate value of pi by scattering 10-yen coins

(2) Experimental result (Java version simulation)
(3) When 100 10-yen coins are scattered

Total number of scattered 10 -yen coins $=100$
Number of 10-yen coins that overlap with
grid points $=85$
Approximate value of pi $=85 \div 100 \times 4$
$=3.4$
(4) When 1000 10-yen coins are scattered

Total number of scattered 10 -yen coins $=1000$
Number of 10 -yen coins that overlap with grid points $=790$

Approximate value of $\mathrm{pi}=790 \div 1000 \times 4$

$$
=3.16
$$

Interesting Simulation

2 Find an approximate value of pi by scattering 10-yen coins

(2) Experimental result (Java version simulation)
(5) When 10000 10-yen coins are scattered

Total number of scattered 10 -yen coins $=10000$
Number of 10 -yen coins that overlap with
grid points $=7806$
Approximate value of $\mathrm{pi}=7806 \div 10000 \times 4$

$$
=3.1224
$$

(6) When 50000 10-yen coins are scattered

Total number of scattered 10 -yen coins $=50000$
Number of 10 -yen coins that overlap with grid points $=39157$

Approximate value of pi $=39157 \div 50000 \times 4$

$$
=3.13256
$$

Interesting Simulation

3 Find an approximate value of pi by scattering sesame seeds

（1）Experiment overview
Draw a square and a circle inscribed in it，then scatter sesame seeds randomly on top of it． The scattered sesame seeds either fit in a circle or are in a square but not in a circle．
At this time，the approximate value of pi can be found using the following fomula．
$\mathrm{pi}=$（Number of sesame seeds in a circle）\div
（Total number of scattered sesame seeds）$\times 4$
（2）Experimental result（Java version simulation）
（1）When sesame seeds have not yet been scattered

【Experiment day】
January 9． 2024
【PC used】
Lavie NX850／N
【Software used】
Self－made software『Scatter sesame seeds to find an approximate value of pi！（Java）』

（2）When 10 sesame seeds are scattered

Total number of scattered sesame seeds $=10$
Number of sesame seeds in a circle $=7$
Approximate value of pi $=7 \div 10 \times 4$

$$
=2.8
$$

Interesting Simulation

3 Find an approximate value of pi by scattering sesame seeds

（2）Experimental result（Java version simulation）
（3）When 100 sesame seeds are scattered

$$
\text { Total number of scattered sesame seeds }=100
$$

Number of sesame seeds in a circle $=81$
Approximate value of pi $=81 \div 100 \times 4$

$$
=3.24
$$

※ The sesame seeds in the circle are displayed in blue ！ ※ The pi is calculated by the following formula ！ $\pi=4 \times$（Number of them in a circle）\div（Total number of them）

Number of sesame seeds in a circle $=81$
$\pi=3.24$
Copyright（C）Sohun 2.2022 （9⿱⿱八厶⿻日土寸合

Init	10	100	1,000	10,000	50,000	End

（4）When 1000 sesame seeds are scattered

Total number of scattered sesame seeds $=1000$
Number of sesame seeds in a circle $=788$
Approximate value of $\mathrm{pi}=788 \div 1000 \times 4$

$$
=3.152
$$

Interesting Simulation

3 Find an approximate value of pi by scattering sesame seeds

(2) Experimental result (Java version simulation)
(5) When 10000 sesame seeds are scattered

Total number of scattered sesame seeds $=10000$
Number of sesame seeds in a circle $=7871$
Approximate value of $\mathrm{pi}=7871 \div 10000 \times 4$

$$
=3.1484
$$

(6) When 50000 sesame seeds are scattered

Total number of scattered sesame seeds $=50000$
Number of sesame seeds in a circle $=39251$
Approximate value of pi $=39251 \div 50000 \times 4$

$$
=3.14008
$$

Interesting Simulation

4 Find an approximate value of pi by scattering the needles

（1）Experiment overview
Draw parallel lines at equal intervals and scatter the needles randomly over the lines．
All needles are the same length，and the distance between parallel lines is twice the length of the needles．The scattered needles either intersect parallel lines or are between parallel lines and do not intersect．
At this time ，the approximate value of pi can be found using the following formula．
$\mathrm{pi}=$（Total number of scattered needles）\div（Number of needles intersecting parallel lines）
（2）Experimental result（VB version simulation）
（1）When the needles have not yet been scattered

【Experiment day】
January 10 ． 2024
【PC used】
Lavie NS600／M
【Software used】
Self－made software『Scatter needles to find an approximate value of pi！（VB）』

（2）When 10 needles are scattered

Total number of scattered needles $=10$
Number of needles
intersecting parallel lines $=4$
Approximate value of $\mathrm{pi}=10 \div 4$
$=2.5$

Interesting Simulation

4 Find an approximate value of pi by scattering the needles

(2) Experimental result (VB version simulation)
(3) When 100 needles are scattered

Total number of scattered needles $=100$
Number of needles
intersecting parallel lines $=36$
Approximate value of pi $=100 \div 36$

$$
=2.777777 \cdots
$$

(4) When 1000 needles are scattered

Total number of scattered needles $=1000$
Number of needles
intersecting parallel lines $=310$
Approximate value of $\mathrm{pi}=1000 \div 310$

$$
=3.225806 \cdots
$$

Number of needles intersecting parallel lines $=36$

Interesting Simulation

4 Find an approximate value of pi by scattering the needles

(2) Experimental result (VB version simulation)
(5) When 10000 needles are scattered

Total number of scattered needles $=10000$
Number of needles
intersecting parallel lines $=3225$
Approximate value of pi $=10000 \div 3225$

$$
=3 . \quad 100775 \cdots
$$

(6) When 50000 needles are scattered

Total number of scattered needles $=50000$
Number of needles
intersecting parallel lines $=15935$
Approximate value of $\mathrm{pi}=50000 \div 15935$

$$
=3.137747 \cdots
$$

Interesting Simulation

5 Find an approximate value of pi by scattering 10－yen coins

（1）Experiment overview
Draw equally spaced parallel lines vertically and horizontally（grid lines），and randomly scatter 10 －yen coins on them．

The width of the parallel lines that make up the grid lines is the same as the diameter of a ten－yen coin．The scattered ten－yen coins either overlap with the grid points or are on the grid lines but do not overlap with the grid points．
At this time，the approximate value of pi can be found using the following formula．
$\mathrm{pi}=$（Number of 10－yen coins that overlap with grid points）\div
（Total number of scattered 10－yen coins）$\times 4$
（2）Experimental result（VB version simulation）
（1）When 10－yen coins have not yet been scattred

【Experiment day】
January 10 ． 2024
【PC used】
Lavie NS600／M
【Software used】
Self－made software『Throw coins to find an approximate value of pi！（VB）』

（2）When t0 10 －yen coins are scattered

Total number of scattered 10 －yen coins $=10$
Number of 10－yen coins that overlap with
grid points $=6$
Approximate value of pi $=6 \div 10 \times 4$

$$
=2.4
$$

Number of coins that overlap the grid points $=6$

$$
\mathrm{pi}=2.4
$$

Copyright（c）K．Niwa 2016.8

Interesting Simulation

5 Find an approximate value of pi by scattering 10-yen coins

(2) Experimental result (VB version simulation)
(3) When t00 10-yen coins are scattered

$$
\text { Total number of scattered } 10 \text {-yen coins }=100
$$

Number of 10 -yen coins that overlap with

$$
\text { grid points }=80
$$

Approximate value of pi $=80 \div 100 \times 4$

$$
=3.2
$$

(4) When t000 10-yen coins are scattered

Total number of scattered 10 -yen coins $=1000$
Number of 10-yen coins that overlap with grid points $=789$

$$
\text { Approximate value of } \mathrm{pi}=789 \div 1000 \times 4
$$

$$
=3.156
$$

Interesting Simulation

5 Find an approximate value of pi by scattering 10-yen coins

(2) Experimental result (VB version simulation)
(5) When 10000 10-yen coins are scattered

$$
\text { Total number of scattered } 10 \text {-yen coins }=10000
$$

Number of 10-yen coins that overlap with
grid points $=7856$
Approximate value of $\mathrm{pi}=7856 \div 10000 \times 4$

$$
=3.1424
$$

(6) When 50000 10-yen coins are scattered

Total number of scattered 10 -yen coins $=50000$
Number of 10 -yen coins that overlap with
grid points $=39253$
Approximate value of pi $=39253 \div 50000 \times 4$

$$
=3.14024
$$

Interesting Simulation

6 Find an approximate value of pi by scattering sesame seeds

（1）Experiment overview
Draw a square and a circle inscribed in it ，then scatter sesame seeds randomly on top of it．
The scattered sesame seeds either fit in a circle or are in a square but not in a circle．
At this time，the approximate value of pi can be found using the following fomula．
$\mathrm{pi}=($ Number of sesame seeds in a circle $) \div$
（Total number of scattered sesame seeds）$\times 4$
（2）Experimental result（VB version simulation）
（1）When sesame seeds have not yet been scattered

【Experiment day】
January 10． 2024
【PC used】
Lavie NS600／M
【Software used】
Self－made software『Scatter sesame seeds to find an approximate value of pi！（VB）』

（2）When 10 sesame seeds are scattered

Total number of scattered sesame seeds $=10$
Number of sesame seeds in a circle $=6$
Approximate value of pi $=6 \div 10 \times 4$

$$
=2.4
$$

F Scatter sesame seeds to find an approximate value of pi！$\quad-\quad \square \times$
Sesame seeds inside the circle are displayed in blue ！ $\mathrm{pi}=4 \times$（Number of sesame seeds in a circle）$\div($（Total number of them）

Interesting Simulation

6 Find an approximate value of pi by scattering sesame seeds

(2) Experimental result (VB version simulation)
(3) When 100 sesame seeds are scattered

$$
\text { Total number of scattered sesame seeds }=100
$$

Number of sesame seeds in a circle $=81$
Approximate value of $\mathrm{pi}=81 \div 100 \times 4$

$$
=3.24
$$

(4) When 1000 sesame seeds are scattered

Total number of scattered sesame seeds $=1000$
Number of sesame seeds in a circle $=773$
Approximate value of $\mathrm{pi}=773 \div 1000 \times 4$

$$
=3.092
$$

\& Scatter sesame seeds to find an approximate value of pit
Sesame seeds inside the circle are displayed in blue ! $\mathrm{pi}=4 \times$ (Number of sesame seeds in a circle $) \div($ Total number of them $)$

Interesting Simulation

6 Find an approximate value of pi by scattering sesame seeds

(2) Experimental result (VB version simulation))
(5) When 10000 sesame seeds are scattered

Total number of scattered sesame seeds $=10000$
Number of sesame seeds in a circle $=7856$
Approximate value of $\mathrm{pi}=7856 \div 10000 \times 4$

$$
=3.1424
$$

(6) When 50000 sesame seeds are scattered

Total number of scattered sesame seeds $=50000$
Number of sesame seeds in a circle $=39266$
Approximate value of pi $=39266 \div 50000 \times 4$

$$
=3.14128
$$

Interesting Simulation

7 Find an approximate value of pi by scattering the needles

（1）Experiment overview
Draw parallel lines at equal intervals and scatter the needles randomly over the lines．
All needles are the same length，and the distance between parallel lines is twice the length of the needles．The scattered needles either intersect parallel lines or are between parallel lines and do not intersect．
At this time ，the approximate value of pi can be found using the following formula．
$\mathrm{pi}=$（Total number of scattered needles）\div（Number of needles intersecting parallel lines）
（2）Experimental result（Android version simulation）
（1）When 1 needle is scattered

> 5:52 ㄸㅜㅜ ㅇ
> วิ. 11 100% -

Buffon｀s Needle

【Experiment day】
January 11 ． 2024
【Smartphone used】
Galaxy S9
【App used】
Self－made app『Buffon＇s Needle！（Android）』
（2）When 12 needles are scattered

Buffon｀s Needle

Total number of scattered needles $=12$
Number of needles
intersecting parallel lines $=5$
Approximate value of $\mathrm{pi}=12 \div 5$

$$
=2.4
$$

【Buffon｀s Needle】

$\mathrm{Pi} \pi \fallingdotseq 2.4$
Number of needles intersecting parallel lines $=5$
Total number of scattered needles $=12$

Interesting Simulation

7 Find an approximate value of pi by scattering the needles

（2）Experimental result（Android version simulation）
（3）When 117 needles are scattered

Total number of scattered needles $=117$
Number of needles
intersecting parallel lines $=38$
Approximate value of $\mathrm{pi}=117 \div 38$
$=3.078947 \cdots$

5：53 凹 뚰 ㅁ
な\％，．11 100%－
Buffon｀s Needle

【Buffon｀s Needle】

Pi $\pi \fallingdotseq 3.0789473684210527$
Number of needles intersecting parallel lines＝38
Total number of scattered needles $=117$
（4）When 999 needles are scattered

Buffon｀s Needle

Total number of scattered needles $=999$
Number of needles
intersecting parallel lines $=314$
Approximate value of $\mathrm{pi}=999 \div 314$

$$
=3 . \quad 181528 \cdots
$$

【Buffon｀s Needle】

Pi $\pi \doteqdot 3.1815286624203822$
Number of needles intersecting parallel lines $=314$
Total number of scattered needles＝999

Interesting Simulation

7 Find an approximate value of pi by scattering the needles

（2）Experimental result（Android version simulation）
（5）When 4998 needles are scattered

な．．11 100% ．
Buffon｀s Needle

Total number of scattered needles $=4998$
Number of needles
intersecting parallel lines $=1587$
Approximate value of pi $=4998 \div 1587$
$=3.149338 \cdots$

【Buffon｀s Needle】

Pi $\pi \fallingdotseq 3.149338374291115$
Number of needles intersecting parallel lines $=1587$
Total number of scattered needles $=4998$
（6）When 10000 needles are scattered

Buffon｀s Needle

Interesting Simulation

8 Find an approximate value of pi by scattering 10－yen coins

（1）Experiment overview
Draw equally spaced parallel lines vertically and horizontally（grid lines），and randomly scatter 10 －yen coins on them．

The width of the parallel lines that make up the grid lines is the same as the diameter of a ten－yen coin．The scattered ten－yen coins either overlap with the grid points or are on the grid lines but do not overlap with the grid points．
At this time，the approximate value of pi can be found using the following formula．
pi $=$（Number of 10－yen coins that overlap with grid points）\div
（Total number of scattered 10－yen coins）$\times 4$
（2）Experimental result（Android version simulation）
（1）When 110 －yen coin is scattered

4：46 룿 ㅁ

Throw Coins

【Experiment day】
January 11 ． 2024
【Smartphone used】
Galaxy S9
【App used】
Self－made app『Throw Coins
to Find the Pi！（Android）』

Pirn 0.0
Number of coins that overlap the grid point $=0$
Total number of coins thrown＝1
（2）When 11 10－yen coins are scattered

Total number of scattered 10 －yen coins $=11$
Number of 10－yen coins that overlap with
grid points $=10$
Approximate value of $\mathrm{pi}=10 \div 11 \times 4$

$$
=3.636363 \cdots
$$

 ชิ，시 100\％

Throw Coins

Pi π^{2} 气． 3.6363636363636362
Number of coins that overlap the grid point $=10$ Total number of coins thrown＝11

Interesting Simulation

8 Find an approximate value of pi by scattering 10－yen coins

（2）Experimental result（Android version simulation）
（3）When 117 10－yen coins are scattered

$$
\text { Total number of scattered } 10 \text {-yen coins }=117
$$

Number of 10－yen coins that overlap with

$$
\text { grid points }=89
$$

Approximate value of $\mathrm{pi}=89 \div 117 \times 4$

$$
=3.042735 \cdots
$$

（4）When 992 10－yen coins are scattered

4：47 뚳 뭋
 な．．11 100%－

Throw Coins

4：48 国
 な．．11 100%＊

Throw Coins

Total number of scattered 10 －yen coins $=992$
Number of 10 －yen coins that overlap with grid points $=789$

Approximate value of $\mathrm{pi}=789 \div 992 \times 4$

$$
=3 . \quad 181451 \cdots
$$

Interesting Simulation

8 Find an approximate value of pi by scattering 10-yen coins

(2) Experimental result (Android version simulation)
(5) When 5007 10-yen coins are scattered

$$
\text { Total number of scattered } 10 \text {-yen coins }=5007
$$

Number of 10 -yen coins that overlap with

$$
\text { grid points }=3897
$$

Approximate value of $\mathrm{pi}=3897 \div 5007 \times 4$

$$
=3.113241 \cdots
$$

(6) When 1000010 -yen coins are scattered

Throw Coins

Interesting Simulation

9 Find an approximate value of pi by scattering sesame seeds

（1）Experiment overview
Draw a square and a circle inscribed in it ，then scatter sesame seeds randomly on top of it．
The scattered sesame seeds either fit in a circle or are in a square but not in a circle．
At this time，the approximate value of pi can be found using the following fomula．
$\mathrm{pi}=$（Number of sesame seeds in a circle）\div
（Total number of scattered sesame seeds）$\times 4$
（2）Experimental result（Android version simulation）
（1）When 1 sesame seed is scattered
5：17 凹 뚠

Sesame Seeds

【Scatter Sesame Seeds to Find Pi】

$$
\mathrm{Pi} \pi \fallingdotseq 0.0
$$

Number of sesame seeds in a circle $=0$
Total number of scattered sesame seeds＝1
（2）When 10 sesame seeds are scattered
7：52 网 日大 • ชิ，1ll 89% ■

Sesame Seeds

【Scatter Sesame Seeds to Find Pi】
$=2.8$
Total number of scattered sesame seeds $=10$
Number of sesame seeds in a circle $=7$
Approximate value of $\mathrm{pi}=7 \div 10 \times 4$

Pi $\pi \doteqdot 2.8$
Number of sesame seeds in a circle $=7$
Total number of scattered sesame seeds $=10$

Interesting Simulation

9 Find an approximate value of pi by scattering sesame seeds

（2）Experimental result（Android version simulation）
（3）When 108 sesame seeds are scattered

Sesame Seeds

【Scatter Sesame Seeds to Find Pi】

$\mathrm{Pi} \pi \fallingdotseq 3.2962962962962963$
Number of sesame seeds in a circle $=89$
Total number of scattered sesame seeds＝108
（4）When 1019 sesame seeds are scattered

Sesame Seeds

【Scatter Sesame Seeds to Find Pi】

Pi $\pi \doteqdot 3.167811579980373$
Number of sesame seeds in a circle $=807$
Total number of scattered sesame seeds $=1019$

Interesting Simulation

9 Find an approximate value of pi by scattering sesame seeds

（2）Experimental result（Android version simulation）
（5）When 5004 sesame seeds are scattered

5：20 凹 뚫

Sesame Seeds

【Scatter Sesame Seeds to Find Pi】

Pi $\pi \fallingdotseq 3.137490007993605$
Number of sesame seeds in a circle $=3925$
Total number of scattered sesame seeds $=5004$
（6）When 10000 sesame seeds are scattered
7：48○○遈• ว่．．11 90% ■

Sesame Seeds

【Scatter Sesame Seeds to Find Pi】

Pi $\pi \fallingdotseq 3.1472$
Number of sesame seeds in a circle $=7868$
Total number of scattered sesame seeds $=10000$
Total number of scattered sesame seeds $=10000$
Number of sesame seeds in a circle $=7868$
Approximate value of $\mathrm{pi}=7868 \div 10000 \times 4$

$$
=3.1472
$$

